解析:3D打印材料及其應用概述(2)
根據3D 打印方法的不同,要求材料的形態也有所不同。熔融沉積成形(Fused Deposition Modeling,FDM)使用的是絲材,激光選區燒結(Selective Laser Sintering,SLS)則使用的是粉材。由于工業上常用的聚合物原料大多以顆粒為主,制成絲材或粉材都要進行二次加工,提高了3D打印耗材的使用成本,目前也有一些單位開始研發以顆粒為原料的3D打印裝備。下面對幾種有代表性的材料進行介紹。
PLA 和ABS 是FDM 最常用的耗材,因價格便宜而十分普及。ABS 是常見的工程塑料,具有較好的機械性能,但3D 打印條件要求苛刻,在打印過程中容易產生翹曲變形,且易產生刺激性氣味。PLA 是可降解的環保塑料,打印性能較好,是一種較為理想的3D 打印熱塑性聚合物,已廣泛應用于教育、醫療、建筑、模具設計等行業。此外,PLA 還具有良好的生物相容性,加入羥基磷灰石改性的PLA可用于組織工程支架的制造。
PA是一種半晶態聚合物,經SLS成形后能得到高致密度且高強度的零件,是SLS 的主要耗材之一。SLS中所使用的PA需具有較高的球形度及粒徑均勻性,通常采用低溫粉碎法制備得到。通過加入玻璃微珠、粘土、鋁粉、碳纖維等無機材料可制備出PA復合粉末,這些無機填料的加入能顯著提高某些方面的性能,如強度、耐熱性能、導電性等,以滿足不同領域的應用需求。
PCL 是一種無毒、低熔點的熱塑性塑料,PCL絲材主要作為兒童使用的3D打印筆的耗材,因成形溫度較低(80~100°C)而有較高的安全性。值得一提的是,PCL具有優異的生物相容性和降解性,可以作為生物醫療中組織工程支架的材料,通過摻雜納米羥基磷灰石等材料還能夠改善力學性能及生物相容性。此外PCL 材料還具有一定的形狀記憶效應,在4D打印方面有一定的潛力。
TPU 是一種具有良好彈性的熱塑性聚合物,其硬度范圍寬且可調,有一定的耐磨性、耐油性,適用于鞋材、個人消費品、工業零件等的制造。結合3D打印技術可以制造出傳統成形工藝難以制造的復雜多孔結構,使得制件擁有獨特且可調控的力學性能。采用SLS 工藝打印的多孔結構TPU鞋墊的彈性性能和使用強度已達到市場使用標準。
PEEK 是一種半晶態聚合物,具有高熔點(343°C)和優異的力學性能,生物相容性也十分出色, 是目前研究較熱的3D 打印材料。純PEEK 的楊氏模量為3.86±0.72 GPa,經碳纖維增強后可達21.1±2.3 GPa,與人骨的楊氏模量最為接近,可以有效避免植入人體后與人骨產生的應力遮擋以及松動現象,是一種理想的骨科植入物材料。采用3D 打印技術制造的PEEK 植入體(圖1)能夠很好地滿足不同患者不同病情的個性化植入物定制需求,目前國內3D打印PEEK植入物已經在臨床上取得了較好的效果。
圖1 胸骨假體CAD模型及實物
水凝膠是一種具有交聯三維網絡的高分子結構,能夠吸收并保持大量的水分(可達99%)。根據聚合物來源的不同,可分為天然水凝膠與合成水凝膠。前者如明膠、瓊脂、海藻酸鈉等具有較高的溶脹性,機械性能相對較差,限制了其應用范圍。后者由于水凝膠的成分、結構、交聯度可調,使得合成水凝膠的各項性能可以在較大范圍內進行調控;同時,合成水凝膠重復性好,能夠進行大規模的生產制造,因此得到國內外研究人員的廣泛關注。
傳統的水凝膠已經在制造隱形眼鏡、創傷修復中取得了較多的應用。水凝膠作為組織工程的理想材料,在該領域的應用前景十分廣闊。除此之外,水凝膠還可以作為傳感器的材料,這是利用了它的膨脹行為和擴散系數隨著周圍環境變化的特性。傳統水凝膠成形主要依靠模具,無法制造復雜結構;采用3D 打印技術成形水凝膠,不僅能夠實現復雜形狀的制造,還能實現復雜孔隙甚至梯度結構的制造,使得3D打印的水凝膠具有傳統制造方式無法獲得的性能。此外,水凝膠中可以加入活細胞,使得3D打印人體器官成為可能。
水凝膠的3D打印方法包括光固化成形及直寫成形(Direct Ink Writing,DIW)。用于光固化成形的水凝膠成分與光敏樹脂類似,包括溶劑、單體、交聯劑、光引發劑等,可以添加無機填料以實現水凝膠性能的調控。直寫成形是3D打印水凝膠更普及的一種形式。打印時將水凝膠置于注射器中,采用電腦根據設計的結構控制注射器運動及擠出,擠出的水凝膠在外界條件的刺激(溫度、水分、pH、光照等)下固化。為了滿足3D打印的要求,通常要求水凝膠的固化速度足夠快,或者流變性能滿足在打印時不發生變形,才能實現成功的打印。目前,商業化的水凝膠打印材料較少,大多數都處于實驗室研制階段。
(責任編輯:admin)