解析:3D打印材料及其應用概述(3)
3、3D打印用金屬材料
根據2018 年的Wohlers Report 報道,金屬增材制造產業有了明顯發展。文中指出,2017 年售出1768 套金屬3D 打印設備,相比2016 年的983 套增長了將近80%。作為3D打印中非常重要的材料,金屬材料在汽車、模具、能源、航空航天、生物醫療等行業中都有廣闊的應用前景。
3D 打印金屬材料主要有粉末形式和絲材形式。粉末材料是最常用的材料,可用于激光選區熔化(Selective Laser Melting,SLM)、激光近凈成形(Laser Engineered Net Shaping,LENS)、電子束選區熔化(Electron Beam Melting,EBM)等多種3D打印工藝;絲材則適合于電弧增材制造(Wire and Arc Additive Manufacture,WAAM)等工藝。
為了滿足3D 打印的工藝需求,金屬粉末必須滿足一定的要求。粉末的流動性是粉末的重要特性之一,所有使用金屬粉末作為耗材的3D打印工藝在制造過程中均涉及粉末的流動,金屬粉末的流動性直接影響到SLM、EBM 中的鋪粉均勻性和LENS 中的送粉穩定性,若流動性太差會造成打印精度降低甚至打印失敗。粉末的流動性受粉末粒徑、粒徑分布、粉末形狀、所吸收的水分等多方面的影響,一般為了保證粉末的流動性,要求粉末是球形或近球形,粒徑在十幾微米到一百微米之間,過小的粒徑容易造成粉體的團聚,而過大的粒徑會導致打印精度的降低。此外,為了獲得更致密的零件,一般希望粉體的松裝密度越高越好,采用級配粉末比采用單一粒徑分布的粉末更容易獲得高的松裝密度。目前3D打印所使用的金屬粉末的制備方法主要是霧化法。霧化法主要包括水霧化法和氣霧化法兩種,氣霧化制備的粉末相比于水霧化粉末純度高、氧含量低、粉末粒度可控、生產成本低以及球形度高,是高性能及特種合金粉末制備技術的主要發展方向。
3D 打印所使用的金屬絲材與傳統的焊絲相同,理論上凡能在工藝條件下熔化的金屬都可作為3D 打印的材料。絲材制造的工藝很成熟,材料成本相比粉材要低很多。
按照材料種類劃分,3D打印金屬材料可以分為鐵基合金、鈦及鈦基合金、鎳基合金、鈷鉻合金、鋁合金、銅合金及貴金屬等。
鐵基合金是3D 打印金屬材料中研究較早、較深入的一類合金,較常用的鐵基合金有工具鋼、316L 不銹鋼、M2 高速鋼、H13 模具鋼和15-5PH 馬氏體時效鋼等。鐵基合金使用成本較低、硬度高、韌性好,同時具有良好的機械加工性,特別適合于模具制造。3D打印隨形水道模具是鐵基合金的一大應用,傳統工藝異形水道難以加工,而3D打印可以控制冷卻流道的布置與型腔的幾何形狀基本一致(圖2),能提升溫度場的均勻性,有效降低產品缺陷并提高模具壽命。
圖2 模具隨型冷卻流道示意圖
鈦及鈦合金以其顯著的比強度高、耐熱性好、耐腐蝕、生物相容性好等特點,成為醫療器械、化工設備、航空航天及運動器材等領域的理想材料。然而鈦合金屬于典型的難加工材料,加工時應力大、溫度高,刀具磨損嚴重,限制了鈦合金的廣泛應用。而3D打印技術特別適合鈦及鈦合金的制造,一是3D打印時處于保護氣氛環境中,鈦不易與氧、氮等元素發生反應,微區局部的快速加熱冷卻也限制了合金元素的揮發;二是無需切削加工便能制造復雜的形狀,且基于粉材或絲材材料利用率高,不會造成原材料的浪費,大大降低了制造成本。目前3D打印鈦及鈦合金的種類有純Ti、Ti6A14V(TC4)和Ti6A17Nb,可廣泛應用于航空航天零件(圖3)及人工植入體(如骨骼,牙齒等)。
圖3 3D打印的C919 中央翼緣條
鎳基合金是一類發展最快、應用最廣的高溫合金,其在650~1000°C 高溫下有較高的強度和一定的抗氧化腐蝕能力,廣泛用于航空航天、石油化工、船舶、能源等領域。例如,鎳基高溫合金可以用在航空發動機的渦輪葉片與渦輪盤。常用的3D打印鎳基合金牌號有Inconel 625、Inconel718及Inconel 939等。
鈷基合金也可作為高溫合金使用,但因資源缺乏,發展受限。由于鈷基合金具有比鈦合金更良好的生物相容性,目前多作為醫用材料使用,用于牙科植入體和骨科植入體的制造。目前常用的3D 打印鈷基合金牌號有Co 212、Co 452、Co 502和CoCr28Mo6等。
鋁合金密度低,耐腐蝕性能好,抗疲勞性能較高, 且具有較高的比強度、比剛度, 是一類理想的輕量化材料。3D 打印中使用的鋁合金為鑄造鋁合金, 常用牌號有AlSi10Mg、AlSi7Mg、AlSi9Cu3 等。韓國通信衛星Koreasat-5A及Koreasat-7 使用了SLM制造的AlSi7Mg輕量化部件(圖4),不僅由原來的多個零件合成一個整體制造,零件重量比原設計降低22%,制造成本降低30%,生產周期縮短1—2個月。
圖4 通訊衛星上使用的3D打印輕量化構件
其他金屬材料如銅合金、鎂合金、貴金屬等需求量不及以上介紹的幾種金屬材料,但也有其相應的應用前景。銅合金的導熱性能良好,可以制造模具的鑲塊或火箭發動機燃燒室。NASA采用3D打印技術制造了由GRCop-84 銅合金內壁和鎳合金外壁構成的燃燒室,內壁采用SLM工藝制造,再以電子束熔絲沉積完成外壁的制造。該燃燒室經過全功率點火測試后,仍然保持良好的形狀,證明了3D打印工藝在節約大量時間和工藝成本的基礎上,取得了與傳統工藝同樣的效果。鎂合金是目前實際應用中最輕的金屬,且具有良好的生物相容性和可降解性,其楊氏模量與人體骨骼也最為接近,可作為輕量化材料或植入物材料。但目前鎂合金3D打印工藝尚不成熟,沒有進行大范圍的推廣。貴金屬如金、銀、鉑等多應用于珠寶首飾等奢侈品的定制,應用范圍比較有限。
形狀記憶合金(Shape Memory Alloy,SMA)是一類形狀記憶材料,具有在受到某些刺激(如熱、機械或磁性變化)時“記憶”或保留先前形狀的能力。SMA在機器人、汽車、航空航天、生物醫療等領域有著廣闊的應用前景。NiTi 合金是目前發展比較成熟的SMA,但NiTi 合金是難加工材料。將3D 打印技術應用于SMA 零件的制造,不僅有望解決SMA的加工難題,還能實現傳統工藝無法實現的復雜點陣結構的制造。近年來有不少學者對NiTi 合金的SLM工藝進行了探索并取得了一定的成果。目前,SLM打印的NiTi 合金零件已經顯示出良好的形狀記憶效應,在8 次壓縮循環后具有約5%的可恢復應變。此外,SLM成形的NiTi 樣品的形狀記憶行為與時效工藝高度相關,經350°C—18 h 時效的樣品展現出了幾乎完美的超彈性。
(責任編輯:admin)