解析高性能金屬零件激光增材制造技術研究進展(2)
國內外激光增材制造技術的最新研究進展
1. 國內外LCD技術最新研究進展
國內外對于LCD技術的工藝研究主要集中在如何改善組織和提高性能。美國OPTOMEC公司和Los Alomos實驗室、歐洲宇航防務集團 EADS等研究機構針對不同的材料(如鈦合金、鎳基高溫合金和鐵基合金等)進行了工藝優化研究,使成形件缺陷大大減少,致密度增加,性能接近甚至超過同種材料鍛造水平。例如,美國空軍研究實驗室Kobryn等對Ti6Al4V激光熔覆沉積成形 工藝進行了優化, 并研究了熱處理和熱等靜壓對成形件微觀組織和性能 的影響,大大降低了組織內應力,消除了層間氣孔等缺陷,使成形件沿沉積方向的韌性和高周疲勞性能達到了鍛件水平。
德國漢諾威激光研究 中心Rottwinkel等 利用感應加熱對基體提前預熱的方法解決了高溫合金成形過程熔覆層開裂的問題,并應用于高溫合金葉片的成形和修 復。在國內, 北京航空航天大學陳博等主要研究了鈦合金零件的LCD 工藝, 并通過熱處理制度的優化,使鈦合金成形件組織得到細化, 性能明顯提高,成功應用于飛機大型承力結構件的制造, 西安交通大學葛江波、張安峰和李滌塵等則通過單道-多道-實體遞進成形試驗,研究了工藝參數對鐵基合金和鎳基合金材料 成形件的尺寸精度、 微觀組織和力學性能的影響規律, 并實現了對成形零件的精確成形和高性能成性一體化 “控形控性” 制造。
LCD技術在零件修復領域也得到了廣泛應用, 美國Sandia國家實驗室和空軍研究實驗室、 英國Rolls-Royce公司、 法國Alstom公司以及德國Fraunhofer研究所等均對航空發動機渦輪葉片和燃氣輪機葉片的激 光熔覆修復工藝進行了研究并成功實現了定向晶葉片的修復,如圖1(a) 所示。此外,美國國防部研發的“移 動零件醫院”,如圖1(b),將LCD技 術應用于戰場環境,可以對戰場破損零件 (如坦克鏈輪、傳動齒輪和軸類零件等) 進行實時修復,大大提高了戰場環境下的機動性。
同時,利用LCD技術,通過混合粉末或控制噴嘴同時輸送不同的粉 末, 可以成形金屬-金屬和金屬-陶瓷等功能梯度材料。美國里海大學 的Fredrick等 研究了利用LCD技術制造Cu與AISI 1013工具鋼梯度 功能材料的可行性, 通過工藝優化以及利用Ni作為中間過渡層材料,解決了梯度材料成形過程中兩相不相容和熔覆層開裂的問題。美國南衛理公會大學的MultiFab實驗室利用LCD技術成功制造了同時具有縱向和橫向梯度的金屬-陶瓷復合材料 零件,如圖2(a)所示。斯洛文尼亞馬里堡大學也對Cu/H13梯度材料的LCD工藝進行了研究,得到了無裂紋的Cu/H13梯度材料,且試樣拉伸強度高于普通鑄造銅,如圖2(b)所示。
此外,美國Sandia國家實驗室和密蘇里科技大學等研究機構也分別研究了Ti/TiC、Ti6Al4V/In 625和In 718/Al2O3等不同材料的功能梯度零件LCD成形工藝。國內方面,西北工業大學楊海鷗、黃衛東等研究了316L/Rene 88DT梯度材料的LCD成形工藝,并總結了熔覆層微觀組織和硬度隨著梯度材料不同成分含量變化而變化的規律。西安交通大學解航、張安峰等進行了Ti6Al4V/CoCrMo功能梯度材料的LCD研究。此外,北京有色金屬研究院席明哲等研究了316L/鎳基合金/Ti6Al4V的成形工藝,沈陽理工大學田鳳杰等則研究了梯度材料LCD成形同軸送粉噴嘴的設計。 LCD設備的升級和改進也是國 內外研究的熱點之一。
美國密蘇里科技大學Tarak等開發了LAMP加工系統,將LCD技術和CNC切削技術結合,在機床主軸上安裝激光頭,從而實現對熔覆成形后的零件實時加工,提高了生產效率,同時保證 了零件精度。同樣來自美國南衛理公會大學MultiFab實驗室的研究人員將五軸聯動技術應用于LCD,通過工作臺擺動旋轉調整,從而克服懸臂件加工支撐的問題,可以成形各類復雜懸臂零件。德國DMG MORI公司 開發的LaserTec 65同樣將五軸聯動 切削加工與LCD結合起來,用于復雜形狀模具、航空異形冷卻流道等零件的加工制造。國內對于LCD設備 的研究較少, 目前西安交通大學正在研制一臺五軸聯動激光增材-減材一體化成形機。
(責任編輯:admin)